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Abstract
We have calculated the electron–phonon coupling for the complete 4d series and the
nonmagnetic 3d transition metals using the linear response method and the linear muffin-tin
orbitals’ basis. A comparison of the linear response results and those obtained via the rigid
muffin-tin approximation is provided. Based on the calculated values of the electron–phonon
coupling constants, band density of states and the measured values of the electronic specific
heat constants, we estimate the spin-fluctuation effects, i.e. the electron–spin-fluctuation
(electron–paramagnon) coupling constants in these systems. For the sake of comparison,
several other metals, Cu, Zn, Ag, Cd, Al and Pb, are also studied. Alternative estimates of the
electron–paramagnon coupling constants are obtained from the values of the Stoner parameters
and the band densities of states at the Fermi level. Implications of these results on the
superconductivity and its pressure dependence as well as the alloying effects of
superconductivity in these systems are discussed. It is pointed out that spin fluctuations play an
important role in the validity of the Matthias rule that in metallic systems the optimum
conditions for (electron–phonon) superconductivity occur for 5 and 7 valence electrons/atom.

1. Introduction

The electron–phonon (EP) interaction is an important process
in solids and the most dramatic manifestation of this interaction
is superconductivity in metals, where all of the properties
are drastically modified with respect to the normal (non-
superconducting) state. In the first approximation the EP
coupling constant λep can be shown to depend on the electronic
density of states at the Fermi level N(0), average phonon
frequency 〈ω〉 (equivalently, the Debye temperature �D) and
the Fermi surface averaged electron–phonon matrix element
〈I 2〉 [1]. Thus, in many situations, where the other two
factors 〈ω〉 and 〈I 2〉 stay more or less unchanged, N(0) alone
can decide the variation of the superconducting transition
temperature Tc with external conditions. A clear demonstration
of this was given by Dynes and Varma [2] for the variation of
Tc as a function of defect concentration in A15 compounds and
as a function of oxygen concentration in NbO. This result was
sometimes interpreted as a rule that λep should be proportional
to N(0) through the 3d and 4d series of transition metals

(see, e.g., Papaconstantopoulos et al [3]) and that metals with
a large value of N(0) are likely to be superconductors with
relatively high Tc. Failure of this simple rule across the 3d
and 4d series can be expected on the basis of the fact that
the bulk moduli of all transition metals are known to increase
(at least initially) as a function of band filling [4, 5] and the
bulk moduli of the late transition metals are, in general, higher
than those of the early ones. The band filling also has a
nontrivial effect on the matrix element 〈I 2〉. Moreover, an
important factor, not figuring in the electron–phonon coupling,
is the effect of spin fluctuations. Unlike the electron–phonon
coupling, electron–spin-fluctuation (ES) interactions or the
electron–paramagnon coupling has a deleterious effect on
the spin singlet superconductivity [6, 15], as they lead to
breaking of the Cooper pairs. Spin fluctuations are strong
in incipient-magnetic materials. In fact, as the d-band filling
increases along the 3d series, spin fluctuations become stronger
and finally drive Cr and Mn antiferromagnetic and Fe, Co
and Ni ferromagnetic. In Pd the effect is believed to be
strong enough to suppress superconductivity despite its large
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value of N(0) [6, 7]. It is argued that the high value of
N(0) in fcc Pd leads to considerable Stoner enhancement
of paramagnetic spin susceptibility, making it a borderline
ferromagnetic material [7]. The effect of spin fluctuations
on the superconductivity for particular 3d and 4d transition
metals has been discussed from time to time by various authors,
but a systematic study of both EP and ES interactions across
the 3d and 4d series has not appeared. In this work we
undertake such a study. We have carried out first-principles
linear response (LR) calculations of the phonon frequencies,
electron–phonon coupling and the phonon linewidths using the
full potential linear muffin-tin orbitals’ (FP-LMTO) method,
as implemented by Savrasov and Savrasov [8–10]. Using
the calculated values of the band density of states N(0),
the electron–phonon coupling constant λep and the measured
values of the electronic specific heat coefficient γ , we estimate
the electron–spin-fluctuation coupling constant λes. Alternate
estimates of λes are obtained from the calculated values
of the Stoner parameter Is and N(0) or the susceptibility
enhancement factor 1/(1 − Is N(0)) [6, 11].

Some time back Papaconstantopoulos et al [3] presented
theoretical results for λep for 32 different metals. However,
their results were based on the rigid muffin-tin (RMT)
approximation of Gaspari and Gyorffy [12]. The shortcomings
of this approximation have been discussed by several
authors [13]. Our results, calculated from first principles, are
free of any such approximation, i.e. no shape approximation
(muffin-tin or atomic sphere) for the potential is made and
the potential changes due to the displacement of the ions
are calculated self-consistently. In addition, our discussion
includes the effects of the ES interaction, which was
neglected in the work of Papaconstantopoulos et al [3] In
this sense our work can be viewed to complement the above
work. We consider 17 metals in total: all nonmagnetic 3d
transition metals, all 4d transition metals and, in addition,
Cu, Zn, Ag, Cd and Pb. For comparison with the results
of Papaconstantopoulos et al [3] we also present results
based on the rigid atomic sphere approximation within the
LMTO scheme. In addition, we calculate the Eliashberg
spectral function and compute the superconducting transition
temperature Tc by solving the linearized Eliashberg equations
near Tc in the imaginary frequency formulation of the
problem [14]. Spin-fluctuation effects are included in the
solution of the Eliashberg equations following the prescription
of Daams et al [15] and also by using the McMillan formula.

Understanding the pressure dependence of superconduc-
tivity is an important area of condensed matter physics and has
been of great interest for a long time [16, 17]. Spin fluctua-
tions are known to be suppressed under pressure. As a result
they have a nontrivial effect on the pressure dependence of Tc.
Recently the present author [22] has argued that the spin fluc-
tuations in hcp Sc are large and are responsible for complete
suppression of superconductivity at normal pressure. It was
demonstrated that the suppression of the spin fluctuations com-
bined with the increase in the EP coupling with pressure can
account for the observed superconductivity in the high pres-
sure phase of Sc. One of the objectives of the present work is
to identify other 3d and 4d metals where spin fluctuations may
play a vital role in the pressure dependence of Tc.

Discussion of superconductivity in this work is based
on an expression of the Coulomb pseudopotential (see
equation (20)), which is derived for simple models by summing
a series of many-body (ladder) diagrams [18, 19] under
some approximations. It captures the differences between
various metals via the valence bandwidth and the maximum
phonon frequency, but does not include the spin-fluctuation
effects. In a more advanced treatment of superconductivity, as
developed recently by Lüders et al [20], spin-fluctuation effects
may be formally incorporated in a Coulomb pseudopotential
that is perhaps nonlocal and spin-dependent. It should be
noted that the electron–phonon coupling, based on density
functional energy bands, incorporates spin fluctuations in
some average sense, as embodied in the exchange–correlation
potential [21]. Electron–paramagnon coupling constants
discussed in this paper should thus be viewed as estimates of
residual spin fluctuations only, suitable for describing relative
and qualitative differences between various metals within the
scope of conventional (s-wave) superconductivity.

2. Electronic structure and electron–phonon
interaction

We use the full potential linear muffin-tin orbitals’ (FP-
LMTO) and linear response (LR) methods [8–10] to compute
the electronic structure, the phonon frequencies, electron–
phonon coupling and the phonon linewidths for the ground
state crystalline structures of the metals with the experimental
values of the lattice parameters [4]. Most calculations
employed a two- or three-κ spd LMTO basis for the
valence band. Semicore states, whenever appropriate, were
treated as valence states in separate energy windows. The
charge densities and potentials were represented by spherical
harmonics with l � 6 inside the non-overlapping MT spheres
and by plane waves with energies �48–70 Ryd, depending
on the lattice parameter, in the interstitial region. Dynamical
and Hopfield (electron–phonon) matrices were calculated for
40 wavevectors (corresponding to an 8, 8, 6 division) in the
irreducible Brillouin zone (BZ) for the hcp metals and for 47
wavevectors (corresponding to a 10, 10, 10 division) for the
bcc and fcc metals. Brillouin zone (BZ) integrations involved
in obtaining these matrices were performed with the full-cell
tetrahedron method [23], using 1200–2000 k-points in the
irreducible zone. Most results were obtained by using the
exchange–correlation potential of Perdew and Wang [24] in
the local density approximation. Checks for a couple of cases
using GGA1 [25] had revealed similar results.

The EP coupling parameter is often expressed in an
approximate form [1] as λep = N(0)〈I 2〉/M〈ω2〉. The
purely electronic parameter appearing in this relation is the
Fermi level DOS N(0). It gives the impression that the
coupling parameter is directly proportional to N(0). In fact, the
Fermi surface averaged EP matrix element has a complicated
dependence on the total as well as partial (angular momentum-
resolved) DOSs at the Fermi level. This point will be illustrated
in a later discussion. To this end in table 1 we show the Fermi
level densities of states for various metals. The basis for the
FP-LMTO calculation does not lend itself to a suitable partial-
orbital (s-, p-, d-, f-) resolution of the DOSs. This is possible
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Table 1. Total FP-LMTO Fermi level DOS N(0) and LMTO-ASA
results for total and (approximate) s-, p-, d- and f-orbital-resolved
Fermi level DOSs: N̄(0), N̄s, N̄p, N̄d, N̄f . In addition to the 3d and
4d metals, Al and Pb are added for comparison. All DOS are in units
of states/(Ryd atom).

Element Structure N(0) N̄ (0) N̄s N̄p N̄d N̄f

3d metals

Sc hcp 29.0 28.9 0.47 7.42 20.4 0.66
Ti hcp 12.4 12.4 0.13 2.11 9.81 0.34
V bcc 25.3 23.6 0.32 3.51 19.2 0.59
Cu fcc 4.13 4.00 0.56 1.42 1.99 0.03
Zn hcp 2.73 2.63 0.54 1.65 0.37 0.07

4d metals

Y hcp 26.1 28.0 0.59 7.42 19.2 0.83
Zr hcp 13.0 13.2 0.19 2.87 9.54 0.58
Nb bcc 19.9 18.0 0.50 3.52 13.2 0.76
Mo bcc 8.10 7.69 0.11 1.18 5.98 0.42
Tc hcp 12.4 12.4 0.22 1.59 10.2 0.43
Ru hcp 10.9 11.0 0.12 0.74 9.82 0.36
Rh fcc 17.4 16.8 0.20 0.64 15.7 0.30
Pd fcc 33.1 31.6 0.30 0.50 30.6 0.19
Ag fcc 3.63 3.54 0.77 1.70 1.03 0.04
Cd hcp 3.02 3.04 0.71 1.89 0.35 0.08

Al fcc 5.45 5.66 1.20 2.61 1.62 0.21
Pb fcc 6.85 6.73 0.40 5.09 0.99 0.25

in the LMTO-ASA basis which consists of muffin-tin orbitals
of pure angular momentum character and no plane waves. In
table 1 the partial l-resolved DOSs correspond to LMTO-ASA
results, the total DOS for which is also shown.

We have computed both the Eliashberg spectral function:

α2 F(ω) = 1

N(0)

∑

k,k′,i j,ν

|gi j,ν
k,k′ |2δ(εi

k)δ(ε
j
k′)δ(ω−ων

k−k′), (1)

and the transport Eliashberg function [10, 14]:

α2
tr F(ω) = 1

2N(0)〈v2
FS〉

∑

k,k′,i j,ν

|gi j,ν
k,k′ |2

× (�vFS(k) − �vFS(k′))2 δ(εi
k) δ(ε

j
k′) δ(ω − ων

k−k′), (2)

where the angular brackets denote the Fermi surface average,
�vFS denotes the Fermi surface velocity and gi j,ν

k,k′ is the electron–
phonon matrix element, with ν being the phonon polarization
index and k, k′ representing electron wavevectors with band
indices i , and j , respectively. Equation (1) can be written as a
BZ sum of the phonon linewidths [26]: γqν:

α2 F(ω) = 1

2π N(0)

∑

qν

γqν

ωqν

δ(ω − ωqν), (3)

with

γqν = 2πωqν

∑

k,i j

|gi j,ν
k,k+q|2δ(εi

k)δ(ε
j
k+q). (4)

As indicated above, in our calculations the wavevectors
q varied from 40 to 50 within the irreducible BZ, while the
wavevectors k, k′ varied from 1200 to 2000. The EP coupling

Table 2. FP-LMTO LR results for the maximum phonon frequency
ωm and average phonon frequencies ω̃ = 〈ω2〉1/2. 〈ωn〉 and ωln are
defined via equations (6) and (7). For comparison, experimental
values of the maximum phonon frequencies ωm(exp) and the low
temperature limit of the Debye frequencies �D from [4], chapter 5,
table 1 are also displayed. All frequency values are in units of meV.
ω̃(�D) = √

�2
D/2 is an estimate of 〈ω2〉1/2 obtained from �D. The

asterisk implies that the value is unavailable.

Element 〈ω〉 ω̃ ωln ωm ωm(exp) �D ω̃(�D)

3d metals

Sc 15.2 16.3 13.8 26.6 28.6 31.0 21.9
Ti 19.2 20.5 17.7 33.9 32.0 36.2 25.6
V 20.7 21.8 19.2 32.6 33.1 32.5 23.0
Cu 18.7 19.5 17.8 29.1 29.7 29.5 20.9
Zn 15.0 16.4 13.7 30.8 26.9 28.2 19.9

4d metals

Y 11.2 11.6 10.7 17.6 19.2 24.1 17.0
Zr 12.7 13.7 11.6 23.8 22.2 25.1 17.7
Nb 15.6 16.7 14.1 27.4 26.8 23.4 16.6
Mo 23.8 24.3 23.1 33.4 33.1 38.8 27.4
Tc 20.1 20.8 19.4 31.0 26.9–27.5 * *
Ru 25.1 25.6 24.5 33.7 32.6 51.7 36.6
Rh 22.4 22.8 22.0 30.0 30.0 41.4 29.3
Pd 14.7 15.6 13.7 28.4 27.8 23.6 16.7
Ag 13.3 13.9 12.6 20.6 20.4 19.4 13.7
Cd 5.67 6.92 4.71 18.8 18.6 18.1 12.8

Al 23.8 24.9 22.3 35.4 40.0 36.9 26.1
Pb 5.77 6.23 5.12 9.7 9.3 9.05 6.4

constant λep follows from an integral involving the Eliashberg
function:

λep = 2
∫ ∞

0

dω

ω
α2(ω)F(ω). (5)

In table 2 we show the maximum phonon frequency ωm

and average phonon frequencies given by the LR calculations.
The logarithmically averaged characteristic phonon frequency
ωln and the average phonon frequencies 〈ωn〉 are obtained by
using the definition given by Allen and Dynes [27]:

ωln = exp

{
2

λep

∫ ∞

0

dω

ω
α2(ω)F(ω) ln ω

}
. (6)

〈ωn〉 = 2

λep

∫ ∞

0
dω α2(ω)F(ω)ωn−1, (7)

where λep is defined by equation (5). For comparison we
have also tabulated the measured values of the maximum
phonon frequencies [28, 29], obtained from inelastic neutron
scattering or x-ray diffraction experiments. The experimental
values depend on the temperature. In addition, in a few
cases the maximum frequencies are not the directly measured
values, being obtained, in fact, from a Born–von Karman fit
to the measured dispersion relations. The effectiveness of
the FP-LMTO linear response method to accurately reproduce
the phonon frequencies in various metallic systems has been
adequately demonstrated in earlier calculations [9, 10, 30].
In some previous studies (see, e.g., [3]) the mean square
phonon frequencies 〈ω2〉 have been estimated from the Debye
frequencies �D using relations such as 〈ω2〉 = �2

D/2. For a
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Figure 1. Trends in N(0), ω̃ = 〈ω2〉1/2, 〈I 2〉 and λep as a function of band filling in 3d and 4d metals.

test of the accuracy of such estimates we have included in the

last column of table 2 the quantity ω̃(�D) =
√

�2
D/2, which

can be compared with the LR result ω̃ = 〈ω2〉1/2. It is clear
that the estimate based on �D is usually higher, sometimes by
about 30–40%, although for several metals such as Nb, Pd, Ag
and Pb it provides surprisingly good results.

In table 3 we show the physical quantities measuring
the strength of the electron–phonon interaction. As indicated
earlier, the electron–phonon coupling parameter λep is a
combination of an electronic parameter (Hopfield parameter)
η = 〈I 2〉N(0) (N(0) being the Fermi level DOS for one
type of spin) and the mean square phonon frequency 〈ω2〉:
λep = η/m〈ω2〉 [1]. 〈I 2〉 is the Fermi surface average of the
square of the electron–phonon matrix element. The electronic
and phonon-related parameters act in opposite directions in
affecting the coupling constant: λep is enhanced by having
higher 〈I 2〉 at lower frequency. As the Hopfield parameter
for transition metals has often been calculated [3] using the
rigid muffin-tin approximation of Gaspari and Gyorffy [12],
in table 3 we have compared the values obtained via the FP-
LMTO LR method (η) and those obtained by using the RMT
scheme implemented within the LMTO-ASA method [31, 32],
known as the rigid atomic sphere (RAS) method. In table 3
the latter values are labelled as ηRAS, while 〈I 2〉RAS denotes
ηRAS/N(0).

The trends in the various electronic, phonon and electron–
phonon properties are displayed in figure 1. That the electron–
phonon coupling parameter λep does not have a simple
(proportionality) relation to N(0) is clear, Pd being the most
prominent example of this. The average frequency (just as
the bulk modulus) shows a clear trend: increasing initially
with the band filling and then falling beyond half-filling of the
band. For metals with more or less similar values of the bulk
modulus, the average frequencies for the 4d metals are lower
due to larger atomic masses. The Fermi surface average of the

Table 3. The Fermi surface averaged square of the electron–phonon
matrix element 〈I 2〉, the Hopfield parameter η = 〈I 2〉N(0) (N(0)
being the Fermi level DOS for one type of spin) and the
electron–phonon coupling constant λep. For comparison η and 〈I 2〉
values obtained by using the RMT scheme implemented within the
LMTO-ASA method, known as the rigid atomic sphere (RAS)
method, are also shown and distinguished from the FP-LMTO LR
results via the subscript RAS. 〈I 2〉 and 〈I 2〉RAS are in units of
(Ry/bohr)2, while η and ηRAS are in units of Ryd/bohr2.

Element 〈I 2〉 〈I 2〉RAS η ηRAS λep

3d metals

Sc 0.0026 0.0030 0.0381 0.0439 0.639
Ti 0.0086 0.0077 0.053 20 0.0478 0.536
V 0.0117 0.0113 0.1476 0.1335 1.24
Cu 0.0086 0.0048 0.0177 0.0096 0.149
Zn 0.0216 0.0040 0.0294 0.0052 0.341

4d metals

Y 0.0029 0.0034 0.0382 0.0472 0.652
Zr 0.0103 0.0096 0.0667 0.0636 0.788
Nb 0.0180 0.0170 0.1786 0.1526 1.39
Mo 0.0289 0.0265 0.1170 0.1019 0.421
Tc 0.0299 0.0219 0.1850 0.1357 0.884
Ru 0.0178 0.0224 0.0975 0.1234 0.298
Rh 0.0114 0.0128 0.0994 0.1078 0.377
Pd 0.0027 0.0037 0.0475 0.0581 0.357
Ag 0.0083 0.0032 0.0150 0.0056 0.146
Cd 0.0124 0.0022 0.0188 0.0034 0.710

Al 0.0162 0.0037 0.0442 0.0105 0.535
Pb 0.0150 0.0066 0.0514 0.0224 1.30

electron–phonon matrix element 〈I 2〉 shows a clear trend for
the 4d series: increasing steadily with the band filling, reaching
a maximum at half-filling of the 4d band and then falling to
a minimum for Pd, when the d band is completely full. It
then increases as the 5s band starts filling. One can expect a
similar trend in 〈I 2〉 for the 3d series. Had we included the

4
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Figure 2. Comparison of the LR results with those based on the RMT approximation of Gaspari and Gyorffy [12].

magnetic 3d metals in their nonmagnetic state in our study,
we would be able to see this trend. It is the minimum in
〈I 2〉 that is the most dominant factor for Pd in determining its
value of λep: despite the highest value of N(0) of the metals
studied, and an average (i.e. not too high) value of 〈ω2〉, the
electron–phonon coupling parameter is small. This result is in
contrast with earlier speculations that the high value of N(0)

for Pd should result in a high value of λep, leading thus to
a surprise in experiments failing to detect superconductivity
in Pd down to the lowest temperatures. Note that the results
for λep clearly point to the validity of the Matthias rule of
superconductivity [33], which asserts that for electron–phonon
superconductivity in metallic systems the optimum conditions
occur for 5 and 7 electrons/atom.

Figure 2 compares the results for 4d metals from LR
calculations with those based on the RMT approximation. For
d-band metals (both 3d and 4d), i.e. where the Fermi level
resides within the d band, the RMT or RAS approximation is
reasonably good. Large differences between the LR and RMT
results show up for metals where the Fermi level falls in the
free-electron (s, p band) part of the spectrum. This is clear
from the results shown in table 3 for Cu, Zn, Ag, Cd, Al and
Pb. Even for the d-band metals the agreement between the LR
and the RAS (or RMT) results is usually good only for normal
pressure ground state volumes. Previous studies [34, 35] have
revealed increasing disagreement between LR and RMT results
with increasing pressure (decreasing volumes).

In figure 3 we display the Eliashberg spectral function
for some 3d and 4d transition metals. The first and second
rows compare the first three metals from the 3d and 4d series,
respectively. The second and third rows compare the first and
the middle three metals from the 4d series. In figure 4 we
compare the non-transition (free-electron) metals Cu and Zn
from the 3d series with their isoelectronic counterparts Ag and
Cd from the 4d series. Savrasov [10] has presented the FP-
LMTO linear response results for some metals, including Nb,

V and Cu, shown in figures 3 and 4. The results shown for
the other 10 metals have not appeared in the literature. Our
results for Nb, V and Cu are in good agreement with those
of Savrasov [10]. Small differences might be there due to
different choices of the exchange–correlation potentials, the
number of plane waves and the number of phonon wavevectors
for which the dynamical and Hopfield matrices are computed.
The Eliashberg spectral functions for all of these metals
follow closely their phonon density of states, indicating that
no unusually large coupling to electron states arises from
particular parts of the phonon spectra. Phonon densities of
states are available in [28]

Figures 5 and 6 illustrate to what extent an attempt to
understand the strength of the electron–phonon interaction,
based solely on the consideration of the total and partial
densities of electron states, might (not) work. It is clear from
the example of Pd discussed above that a high value of N(0)

does not guarantee a high value of the Hopfield parameter η.
Contrary to a popular and often used conjecture, a high value
of d-orbital projected Fermi level DOS Nd(0) is also not a good
indicator. As revealed by table 1, the ratio Nd/N(0) increases
monotonically with band filling across the 4d series, while
the Hopfield parameter shows a complicated non-monotonic
behaviour (figure 2). The Gaspari and Gyorffy [12] RMT
expression for the Hopfield parameter η shows the dependence
on total and partial electronic DOSs at the Fermi level and it
is not a simple one. Within the RMT the spherically averaged
part of the Hopfield parameter is obtained from [12]

η = 2N(0)
∑

l

(l + 1)M2
l,l+1

fl

2l + 1

fl+1

2l + 3
, (8)

where N(0) is the Fermi level DOS per atom per spin and fl is
a relative partial state density:

fl = Nl (0)

N(0)
. (9)

5
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Figure 3. Eliashberg spectral function α2 F(ω) as a function of the frequency ω from some 3d and 4d transition metals.

Figure 4. Eliashberg spectral function α2 F(ω) as a function of the frequency ω for non-transition (free-electron) 3d metals Cu and Zn and
their isoelectronic 4d counterparts Ag and Cd.

Ml,l+1 is the electron–phonon matrix element obtained from
the gradient of the one-electron potential V (r) and the radial
solutions Rl and Rl+1 of the Schrödinger equation within the
muffin-tin sphere of radius S evaluated at the Fermi energy:

Ml,l+1 =
∫ S

0
Rl

dV

dr
Rl+1r 2 dr. (10)

In LMTO-ASA S stands for the radius of the space
filling and volume-preserving (and hence slightly overlapping)
atomic spheres. If it were possible to neglect the matrix
elements M2

l,l+1 and all partial DOSs other than Nd(0), a

proportionality of η to fractional d-DOS, Nd(0)/N(0) could
be expected. In fact, the dependence would be on the product
Np(0)Nd(0)/N(0)2, if the contributions from the s–p and d–f
scattering were neglected. It is not clear to what extent this
ratio alone would correctly reflect the variation of η across the
3d or 4d transition metal series. To explore this, in figure 5 we
have plotted the following combinations of the DOS ratios for
4d metals:

N1 = (
Ns Np + 2

15 Np Nd + 3
35 Nd Nf

)
/N(0) (11)

N2 = (
2

15 Np Nd + 3
35 Nd Nf

)
/N(0) (12)
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Figure 5. The Hopfield parameter η for 4d metals calculated via the
LR method and the RAS (upper panel) approximation, and the DOS
combinations N1 − N3 (see the text for details) in the RMT
expression (8) that might be used to represent the Hopfield parameter
(lower panel).

N3 = (
2

15 Np Nd
)
/N(0), (13)

to represent the DOS dependence of the Hopfield parameter
and compared them with the actual LR and RMT(RAS) values
of η. All partial DOSs are taken at the Fermi level.

In figure 6 we plot the DOS combinations N1 − N3 divided
by N(0) to represent the DOS dependence of 〈I 2〉 and compare
them with the actual LR and RMT/RAS values. It is clear from
figures 5 and 6 that the matrix elements M2

l,l+1 play a vital role
in deciding the strength of η and 〈I 2〉 and cannot be neglected.
Hence, statements associating large DOSs such as Nd or N(0)

with large electron–phonon coupling must be considered with
caution and be backed by supplementary arguments. A large
N(0) or Nd does not guarantee a large Hopfield parameter, and
definitely not λep, which is further dependent on the phonon
frequencies. The importance of the s–p scattering for the non-
transition metals Zn and Cd can be clearly seen in figures 5
and 6. In fact, the s–p channel provides the largest contribution
to η and 〈I 2〉 for these metals, while the contribution from the
d–f channel can be safely neglected.

3. Superconducting transition temperature Tc

The superconducting transition temperature can be obtained by
solving the linearized isotropic Eliashberg equation at Tc (see,
e.g., [14]):

Z(iωn) = 1 + πTc

ωn

∑

n′
W+(n − n′)sgn(ωn′),

Z(iωn)(iωn) = πTc

|ωn |�ωc∑

n′
W−(n − n′)

(iωn′)

|ωn′ | ,

(14)

where ωn = πTc(2n + 1) is a Matsubara frequency, (iωn)

is an order parameter and Z(iωn) is a renormalization factor.
Interactions W+ and W− contain a phonon contribution λep, a
contribution from spin fluctuations λes and effects of scattering

Figure 6. Fermi surface average of the electron–phonon matrix
element 〈I 2〉 for 4d metals obtained via linear response method and
the RAS approximation (upper panel), and the DOS combinations
N1/N(0) − N3/N(0) (see the text for details) in the RMT
expression (8) that might be used to represent 〈I 2〉 (lower panel).

from impurities. With scattering rates γm = 1
2τm

and

γnm = 1
2τnm

referring to magnetic and nonmagnetic impurities,
respectively, the expressions for the interaction terms are

W+(n−n′) = λep(n−n′)+λes(n−n′)+δnn′(γnm+γm), (15)

and

W−(n − n′) = λep(n − n′) − λes(n − n′)
− μ∗(ωc) + δnn′(γnm − γm). (16)

The phonon contribution is given by

λep(n − n′) = 2
∫ ∞

0

dω ωα2(ω)F(ω)

(ωn − ωn′)2 + ω2
, (17)

where α2(ω)F(ω) is the Eliashberg spectral function, defined
by equation (1). λep(0) = λep is the electron–phonon coupling
parameter, the values of which are given in table 3. The
contribution connected with spin fluctuation can be written as

λes(n − n′) =
∫ ∞

0

dω2 P(ω)

(ωn − ωn′)2 + ω2
, (18)

where P(ω) is the spectral function of spin fluctuations, related
to the imaginary part of the transversal spin susceptibility
χ±(ω) as

P(ω) = − 1

π

〈|gkk′ |2 Im χ±(k, k′, ω)
〉
FS

, (19)

where 〈 〉FS denotes the Fermi surface average. λes = λes(0) is
often referred to as the electron–spin-fluctuation or electron–
paramagnon coupling constant.

In equation (16), μ∗(ωc) is the screened Coulomb
interaction:

μ∗(ωc) = μ

1 + μ ln(E/ωc)
, (20)

with μ = 〈N(0)Vc〉FS being the Fermi surface average of the
Coulomb interaction. E is a characteristic electron energy,
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usually chosen as the Fermi energy EF and ωc is a cutoff
frequency, usually chosen ten times the maximum phonon
frequency: ωc 	 10ωmax

ph .
For a start, we ignore all consideration of spin fluctuations

and impurity scattering and solve the Eliashberg equation
with only the electron–phonon term and the Coulomb
pseudopotential μ∗(ωc). As is often done, we assume that a
reasonable value for μ is ∼1.0, and from the calculated Fermi
energies EF we obtain μ∗ for all the metals, with the cutoff
frequency ωc assumed to be ten times the maximum phonon
frequency. The Eliashberg equations (14) can be solved
iteratively from the knowledge of the Eliashberg spectral
function. The critical temperature can be identified by the
opening of the gap in the electronic spectrum, which means
a non-vanishing order parameter . One way to calculate the
critical temperature is to assume that at or close to Tc the square
of the gap function, being close to zero, can be neglected. This
converts the problem into the solution of a simple eigenvalue
problem, with Tc being the highest temperature at which the
largest eigenvalue is unity. There are efficient algorithms,
e.g. the power method, that can be used to calculate the largest
eigenvalue and the corresponding eigenvector. The values of
μ∗(ωc) and Tc are listed in table 4, where we have omitted the
metals for which both calculated and experimental values of
Tc are zero. Note that Tc values are dependent on μ∗(ωc) and
equation (20) is expected to provide only a reasonable estimate.
In fact, μ∗(ωc) is strictly unknown. Therefore, in table 4 in a
few cases (where spin fluctuations are not expected to be large)
we have noted values of μ∗(ωc), which would yield values of
Tc close to the experimental values. The other unknown in
the problem is, of course, the electron–paramagnon coupling
constant λes, which we discuss in section 4.

For pedagogical reasons, we have listed in table 3 the
values of Tc obtained by using the Allen–Dynes form [14] of
the McMillan expression:

Tc = ωln

1.2
exp

{
− 1.04

(
1 + λep

)

λep − μ∗(1 + 0.62λep)

}
, (21)

where ωln is the logarithmically averaged phonon fre-
quency [14], obtained from our LR calculations and reported in
table 2. Note that the Coulomb pseudopotential μ∗ appearing
in the McMillan equation above is related to μ∗(ωc) appearing
in the Eliashberg equation via [14]

μ∗ = μ∗ (ωln) = μ∗(ωc)

(1 + μ∗(ωc) ln (ωc/ωm))
. (22)

Our results are computed with ωc/ωm = 10. The Tc

values obtained by solving the Eliashberg equations and those
from the McMillan expression equation (21) show excellent
agreement. This shows that the analytic expression represents
very well the solution of the Eliashberg equation, when
the same α2 F(ω) function which is used in the Eliashberg
equation is used to compute the quantities ωln and λep for
the McMillan equation. The results also lend credence
to the correspondence between μ∗(ωc) and μ∗ given by
equation (22). In practice, the McMillan equation is used to
estimate λep from measured values of Tc and errors result from

Table 4. The Coulomb pseudopotential μ∗(ωc), superconducting
transition temperature Tc from the solution of the Eliashberg
equation, Coulomb pseudopotential μ∗ for use in the McMillan
equation (21), the transition temperature T M

c obtained from the
McMillan equation and the measured values of the transition
temperatures Tc(exp) (table 1, chapter 12 of [4] and [36]). Metals for
which both experimental and calculated values of Tc are zero have
been omitted. The results do not include spin-fluctuation effects. In a
couple of cases where spin fluctuations are expected to be negligible,
we show μ∗(ωc) values that would yield Tc s in agreement with the
measured values Tc(exp).

Element μ∗(ωc) Tc (K) μ∗ T M
c (K) Tc(exp) (K)

3d metals

Sc 0.2528 2.17 0.1598 2.21 <0.1
Ti 0.2563 1.19 0.1612 1.19 0.39
V 0.2500 17.35 0.1586 16.37 5.38
Zn 0.2358 0.0 0.1528 0.02 0.875

0.06 0.8

4d metals

Y 0.2333 2.20 0.1518 2.06 0.0
Zr 0.2389 3.95 0.1541 4.01 0.546
Nb 0.2400 15.6 0.1500 14.6 9.50
Mo 0.2451 0.35 0.1567 0.30 0.92
Tc 0.2400 9.26 0.1546 8.98 7.7
Ru 0.2398 0.0 0.1545 0.002 0.51

0.08 0.5
Rh 0.2326 0.0 0.1515 0.11 0.0003
Cd 0.2016 1.53 0.1377 1.41 0.56

Al 0.2250 1.93 0.1482 1.90 1.14
Pb 0.1700 6.02 0.1200 5.44 7.193

uncertainties in the values of ωln and μ∗. It should be noted
that calculations for hcp Fe under pressure [34] had shown
the McMillan expression to overestimate Tc with respect to
the results from the Eliashberg equation, while for fcc and
bct boron (extreme high pressure phases) an opposite trend
was revealed [35]. It is possible that the validity of the
McMillan expression is somewhat restricted to metals close to
their ground state densities.

4. Spin fluctuations and electron paramagnon
coupling

Spin fluctuations are supposed to be large for metals that
are borderline magnetic, i.e. exhibit what is known as
incipient magnetism. Such systems are characterized by large
exchange–correlation enhancement of static spin susceptibility
χ . The enhancement factor with respect to the Pauli
spin susceptibility χ0 can be put in the form χ/χ0 =
1/(1−Is N(0)), where Is is an exchange–correlation-dependent
integral [37] and can be identified with the Stoner parameter
in the Stoner model, which assumes a wavevector-independent
exchange splitting of the paramagnetic electron bands to
describe the ferromagnetic state.

For a proper theoretical treatment of the spin-fluctuation
effects one needs to compute λes(n − n′) from the spin
susceptibility function given by equation (18). However,
it is important to note that such treatments tacitly assume
a Migdal-like theorem being applicable to spin fluctuations.

8
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Figure 7. Correlation between the low temperature electronic specific heat coefficient γ and the spin susceptibility enhancement factor χ/χ0.
γ is given in units of mJ/g-at.K2 [38].

The Eliashberg equations (equation (14)) are based on the
assumption that the maximum or the cutoff energy of spin
fluctuation is much smaller than the characteristic electronic
energy, e.g. the Fermi level.

A somewhat qualitative treatment of spin fluctuations can
be based on estimating λes = λes(0) from experiments. Both
electron–phonon and the electron–paramagnon interactions
contribute to the electronic specific heat. In an independent
one-electron picture this is interpreted as the electronic mass
enhancement or, equivalently, the enhancement of the density
of states over the bare band value N(0). The latter is the value
given by calculations, where these interactions are not included
in the one-electron Hamiltonian. Thus, an estimate of the
electron–paramagnon coupling constant λes can be obtained
from the measured value of the temperature coefficient of the
electronic specific heat γ , and the calculated values of the
bare band density of states and the electron–phonon coupling
constant λep:

γ = π2

3
k2

B N∗(0) (23)

N∗(0) = N(0)(1 + λeff) (24)

λeff = λep + λes. (25)

Here, γ and N(0) refer to the values per atom. The Coulomb
interactions are included, in an average sense, in the density
functional calculations of N(0) and have therefore been left out
of equation (23). Specific heat enhancement due to electron–
paramagnon coupling should be pronounced for systems with
large exchange enhancement of spin susceptibility. In figure 7
we display the bare band densities of states, the Stoner
parameters Is [37], susceptibility enhancement factors χ/χ0

and electronic specific heat constants γ [38] for the 3d and 4d
metals studied. A strong correlation between γ and χ/χ0 is
noticeable.

Values of λes obtained by using equation (23) are shown in
table 5 as λ(1)

es . The difficulty with using equation (23) is that it
can only be used as a guide. As discussed by MacDonald [21],
spin density functional calculations include partly the spin-
fluctuation effects via the exchange–correlation potential. As
noted by Savrasov and Savrasov [10], the use of equation (23)
may result in negative values of λes, indicating that the value
of N(0) in this equation needs to be reduced with respect to
the value obtained from the spin density functional calculation.
Dynes and Varma [2] use equation (23) with an adjustable
prefactor on the right-hand side. This prefactor is less than
unity, but unknown. In table 5 we have left blank the values
of λ(1)

es , whenever it comes out to be negative via the use of
equation (23). For an alternate estimate of λes, we follow
the analysis presented in [34] (see also [40]). An integration
of P(ω) given by equation (19), under some approximations,
leads to the result

λes = αN(0)Is ln
1

1 − N(0)Is
, (26)

where the constant α is of the order of unity (�1)). In [34],
where an analysis for hcp Fe was presented for varying
volumes per atom, the constant α was chosen by a fit to the
measured Tc at a given pressure. Here we choose α = 1 and
provide the corresponding estimates of λes in table 5 as λ(2)

es ,
which should be considered as the upper limits to the values of
λes coming from equation (26).

The two methods yield different estimates of λes, with
some common features. Both Sc and Y, the first transition

9
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Table 5. Values of electron–paramagnon coupling constants from
electronic specific λ(1)

es and from equation (26) λ(2)
es .

Element λ(1)
es λ(2)

es

3d metals

Sc 0.513 0.465
Ti 0.005 0.06
V 0.35
Zn 0.020 0.006

4d metals

Y 0.579 0.309
Zr 0.053
Nb 0.126
Mo 0.078 0.017
Tc 0.012 0.043
Ru 0.441 0.033
Rh 0.145 0.114
Pd 0.256 0.73
Cd 0.005

Al 0.034

metals from the 3d and 4d series, show large values of
λes, irrespective of the method used, and so does Pd.
In addition, Ru and Rh from the 4d series are likely
candidates for moderately large λes, while other metals whose
superconducting properties are quite possibly affected by spin
fluctuations are Ti, V, Nb, Mo and Tc. Rietschel and
Winter [39] have discussed spin fluctuations in Nb and V, based
on specific heat, susceptibility and reasonable models of the
spectral function P(ω) in equations (16) and (19). Their values
of 0.21 and 0.34 for Nb and V, respectively, compare well with
our values of 0.13 and 0.35. The values of λes for Sc and Y are
large enough to render them non-superconducting. Without the
spin-fluctuation effects they both would be superconducting
with similar values of Tc. Contrary to the popular belief
that Pd would be superconducting in the absence of spin
fluctuations, it transpires that the electron–phonon coupling
in Pd is sufficiently low to render it non-superconducting
even without considerations of spin fluctuations. Pb and Al
are simple metals, and as such spin fluctuations are expected
to have negligible effects in these cases. The calculated
values of Tc for them without any consideration of spin
fluctuations are in excellent agreement with the measured
values (table 4).

Daams et al [15] have suggested that the effects of
spin fluctuations on Tc can be incorporated by a simple
rescaling of λep and the Coulomb pseudopotential μ∗ in the
Eliashberg equations: λep → λep/(1 + λes), μ∗ → (μ∗ +
λes)/(1 + λes). The underlying assumption is that in the
range of the phonon frequencies the susceptibility χ±(ω)

in equation (19) is essentially static and the peak in the
spectral function P(ω) occurs at a frequency far above the
maximum phonon frequency. We have solved the Eliashberg
equations by dropping explicitly the terms λes(n − n′) in
equations (15) and (16), while rescaling λep and μ∗ as
indicated above. Alternatively, we use an extension of the
McMillan formula [40] that is often used to incorporate the

Table 6. Coulomb pseudopotential μ∗ for use in the McMillan
equation (27), electron–paramagnon coupling constant λes, the
transition temperature T M

c obtained from the McMillan equation (21)
without the inclusion of spin fluctuations, the transition temperature
T M

c (SF) from equation (27) and the measured values of the transition
temperatures Tc(exp). The choice of μ∗ and λes was guided by the
values in tables 4 and 5, while λep and ωln are strictly the calculated
values.

Element μ∗ λes T M
c (K) T M

c (SF) (K) Tc(exp) (K)

3d metals

Sc 0.160 0.465 2.21 0.0 <0.1
Ti 0.161 0.06 1.19 0.30 0.39
V 0.140 0.25 16.4 5.0 5.38

4d metals

Y 0.152 0.309 2.06 0.0 0.0
Zr 0.250 0.053 3.95 0.51 0.546
Nb 0.130 0.126 14.6 9.0 9.50
Tc 0.155 0.043 8.98 6.6 7.7
Cd 0.200 0.005 1.41 0.63 0.56

spin-fluctuation effects:

Tc = ωln

1.2
exp

{
− 1.04(1 + λep + λes)

λep − λes − μ∗[1 + 0.62(λep + λes)]
}

.

(27)
Here μ∗ = μ∗(ωln), as listed in table 4. This formula
is meaningful as long as λes is sufficiently less than λep,
so that the denominator in the argument of the exponential
in equation (27) stays positive and not close to zero. The
two treatments yield similar results. Since the values of λes

are not rigorously derived, we quote some results based on
equation (27).

With the inclusion of λes both Sc and Y show a Tc ∼ 0 K.
For Nb λes = 0.126 and μ∗ = 0.15 would reduce Tc to 8 K, in
excellent agreement with the measured value 9.5 K. Lowering
μ∗ to 0.13 results in almost exact agreement with the measured
value of Tc. In table 6 we display the effect of including the
spin fluctuations on the calculated Tc based on equation (27).
The values of ωln and λep have been kept strictly the same as
the calculated values (tables 2 and 3). The choice of μ∗ and
λes has been guided by the values in tables 4 and 5 to obtain
agreement with the measured values of Tc. The closeness of
these values to the values in tables 4 and 5 lend credibility to
our analysis. An attempt to exactly fit the measured Tc was
not done, as the goal of the exercise is to show that reasonable
choices of μ∗ and λes, consistent with the values in tables 4
and 5, are able to explain the measured values of Tc.

That Sc should be superconducting was a conclusion
reached by Papaconstantopoulos et al [3] on the basis of their
RMT calculation of λep. However, they had considered Sc
in a bcc structure and surmised that the calculation for the
hcp phase would yield a lower λep, which would explain
why superconductivity has not been seen in hcp Sc down to
0.1 K [36]. Our results show that, on the basis of λep alone,
hcp Sc should be superconducting and that it is the large spin
fluctuations leading to breaking of the Cooper pairs that is
responsible for the absence of superconductivity in this case.
In fact, they quote two possible values of λep, 0.639 and 0.489.
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The latter value is obtained when the d–f channel contribution
is reduced by 50% (see [3] for details), while the former
coincides exactly with our FP-LMTO linear response result for
the hcp phase. Although their RMT results for 〈I 2〉 are close
to our linear response results for the transition metals, there are
significant differences for simple and noble metals Al, Cu, Zn,
Ag, Cd and Pb. In addition, their estimation of the average
phonon frequency based on the Debye temperature suffers
from inaccuracies, as shown in table 2. This explains why
they do not find superconductivity for Al, while experiments
and our linear response results indicate otherwise, and why
their calculated Tc for technetium is considerably lower than
the experimental value of 7.73 K.

Large spin fluctuations and the nature of incipient
magnetism in hcp Sc have been discussed by several
authors [41–46]. Thakor et al [44] and Crowe et al [47] have
discussed spin susceptibility in Y and its similarity to that in Sc.
For a detailed discussion of the comparison of spin-fluctuation
effects in hcp Sc and fcc Pd readers are directed to [22]. Ru and
Rh, with moderately large λes in table 5, are known to show
magnetic or borderline magnetic behaviour under conditions
of low coordination and/or higher volume per atom. Ru
monolayers on noble metal surfaces have been found to be
magnetic, while V, Ru, Rh and Pd show induced magnetization,
when in contact with ferromagnetic materials [48]. Ru
monolayers, epitaxially adsorbed on graphite, have been found
to be ferromagnetic at temperatures below 250 K [49, 50]. This
result is supported by theoretical studies as well [51]. Table 4
shows that no electron–paramagnon coupling is needed to
explain the low Tc of Ru and the absence of superconductivity
in Rh, the calculated Tc without electron–paramagnon coupling
for both being zero. However, it is possible that in these cases
μ∗(ωc) is overestimated and/or λep is undervalued, leaving
room for spin fluctuations to indeed play some role after all.
A similar comment might apply to Mo.

5. Pressure dependence of Tc and alloying effects

Spin fluctuations, like all other correlation effects, are
supposed to be reduced under increasing pressure. In [22]
it was argued that the increase in λep with pressure in
hcp Sc, together with the suppression of spin fluctuations,
strongly supports the appearance of superconductivity in the
high pressure complex Sc-II phase and subsequent increase
of Tc under pressure, observed recently by Hamlin and
Schilling [52]. Similar considerations must hold for the
pressure dependence of Tc in yttrium as well. Hamlin et al
[53] have reported that Y becomes superconducting under high
pressure, with Tc = 17 K at 89 GPa and 19.5 K at 115 GPa of
pressure. Yin et al [54] have studied the pressure dependence
of Tc in the fcc phase of Y. Yttrium undergoes a series of phase
changes under pressure: hcp → Sm-type → dhcp → dfcc
(distorted fcc with trigonal symmetry), at pressures around
12 GPa, 25 GPa and 3–35 GPa, respectively. The analysis
by Yin et al [54] for the fcc phase does not consider spin-
fluctuation effects. Our results indicate that the suppression
of spin fluctuations should play an important role in the
appearance of superconductivity in Y under pressure, as well

Figure 8. Phonon distribution in fcc and hcp phases of Y, with the
density of the fcc phase chosen to be the same as the hcp ground
state.

as the increase in Tc with pressure. Incidentally, there may be
non-negligible differences due to the crystal structure as well.
As we show in figure 8, there is a significant difference between
the phonon densities of states of the hcp and fcc (studied by
Yin et al [54]) phases of yttrium. Under pressure, considerable
changes in the phonon density of states takes place, along
with a broadening of the entire spectrum, as found by these
authors. Apart from Sc and Y, spin-fluctuation effects should
also be relevant for elements such as Nb and V as well as
alloys containing Sc, Y, Pd, Nb, V and, to a lesser extent,
Ru and Rh. With increasing pressure, as long as there is no
structural change, there is usually an increase in 〈I 2〉 and 〈ω2〉,
while N(0) decreases. Depending on the relative changes in
these quantities Tc may increase or decrease. For Y, Sc, Pd, V,
Nb and their alloys the suppression of spin fluctuations under
pressure should be considered as well. Pressure dependence
of Tc in Nb up to 132 GPa has been studied experimentally by
Struzhkin et al [55]. Abrupt changes in Tc at 5 and 60 GPa have
been explained via calculations by Tse et al [56] as being due
to changes in the topology of the Fermi surface. The calculated
values of λep decrease rapidly with pressure (due to rapid
increase in phonon frequencies) and then increase abruptly at a
density, presumably corresponding to a pressure of ∼5 GPa
due to a change in Fermi surface topology. Beyond this,
the calculated λep decreases again. Although the calculations
explain the abrupt changes, and yield EP coupling constants
in qualitative agreement with the experiment, the exact profile
of the Tc versus pressure curve is not well reproduced. The
experiments show an initial decrease in Tc followed by a sharp
increase at ∼5 GPa. However, the initial drop in measured Tc

is a lot less than the calculated EP coupling constants would
suggest. Similarly, the rise in measured Tc immediately above
5 GPa is stronger than what is suggested by the calculated
λep. The inclusion of spin-fluctuation effects, strong at ambient
pressure and diminishing with increasing pressure, can explain
the discrepancy. In fact, the calculated λep [56] decreases from
1.36 (in close agreement with 1.39, quoted in this work) to
1.02 as the pressure increases to 5 GPa, and then increases
sharply to 1.21. The corresponding numbers obtained from
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experiment [55] are 1.16, 1.12 and 1.18. The experimental
numbers can be interpreted as ∼ λep–λes. This gives λes = 0.2
at ambient pressure, decreasing to 0.1 at 5 GPa and then to 0.03
above 5 GPa. Note that the value λes = 0.2 is not far from the
value 0.126 quoted in table 5.

Finally, it seems reasonable to guess from the results for
Sc and Y that the corresponding 5d metal La should also
exhibit large spin fluctuations and the pressure dependence of
its Tc [59] should be somewhat dictated by these effects. This
idea is supported by the fact that La has the highest electronic
specific heat constant among the 5d metals [38]. Pressure
dependence of Tc in La has been studied experimentally by
several groups [57–59]. The most recent study [59] quotes
Tcs higher than the two previous reports [57, 58], and also
reveals abrupt increases in Tc around 2 and 5.4 GPa, not
seen previously. The recent work also extends the study to
50 GPa, higher than the previous works that were limited to
less than 20 GPa [57]. A pseudopotential-based plane-wave
basis calculation by Gao et al [60] for the fcc phase shows
agreement, without any consideration of spin fluctuations,
between the calculated Tcs at three pressures between 2.5 and
4.5 GPa and those measured in the earlier studies [57, 58]. A
couple of comments are necessary at this point. Tissen et al
[59] claim that the earlier measurements [57, 58] were for
metastable fcc states. Their measured Tc s for the fcc phase are
lower than those of the earlier measurements [57, 58], and also
lower than the values calculated by Gao et al [60]. Tc, in the
work by Gao et al, is calculated via the McMillan formula only.
They use a pressure-independent Coulomb pseudopotential,
which, fitted to Tc at one pressure, seems to work for the
other two pressures as well. This work does not consider the
ambient pressure (hcp or dhcp) case, where the spin-fluctuation
effects should be most pronounced. It is conceivable that the
spin-fluctuation effects in the fcc phase of La are lower (and
perhaps negligible) than in the hcp or dhcp phases. Note
that the idea that such effects should be significant in La are
based on our study of the hcp phases of Sc and Y. Further
work, both theoretical and experimental, is needed to resolve
the issues of the discrepancies between the old and the recent
measurements, as well as the role of spin fluctuations in La.

For superconducting alloys containing either Sc, Y, Nb,
V and Pd, a lowering of Tc with increasing concentration of
these elements should be observable. Jensen and Maita [61]
attribute the rapid decrease in the Tc of Zr–Sc alloys with
increasing Sc concentration to spin fluctuations. Rietschel
et al [62] have argued that spin fluctuations are responsible
for a stronger suppression of Tc in VN, compared with NbN.
According to these authors Tc in VN, based solely on EP
interaction, should be ∼30 K, in contrast to the observed
value of 8.6 K. The alloy Pd–Ag is an interesting case. For
some time it was believed that this alloy system should be
superconducting for concentrations of Ag large enough to
reduce the spin fluctuations, while the EP coupling still remains
strong. Pd–Ag was never found to be superconducting [63].
This is consistent with our result that the EP coupling in
Pd is sufficiently low to render it non-superconducting even
without consideration of spin fluctuations. Addition of Ag
lowers the EP coupling constant, making it less favourable

to superconductivity. Note that claims of superconductivity
in the Ag–Pd–Ag epitaxial metal film sandwich have been
made [64]. Our results for bulk metals cannot be applied
to such cases. Finally, these considerations should hold for
amorphous (glassy) superconducting alloys as well [65–67].

6. Summary

We have studied the electron–phonon and electron–paramagnon
interactions in 4d and nonmagnetic 3d transition metals, and
some simple and noble metals. The electron–phonon cou-
pling constants and Eliashberg spectral functions are calcu-
lated via a first-principles method. We study the trends, as
a function of band filling, in the Fermi surface average of
the electron–phonon scattering, phonon frequencies and the
electron–phonon coupling constants. Wherever applicable, we
provide a comparison of the first-principles linear response
results with those based on the rigid muffin-tin approxima-
tion. Implications of the results for the pressure dependence
of superconductivity and for alloys are discussed briefly. Our
results support the Matthias rule of superconductivity [33],
which asserts that for electron–phonon superconductivity in
metallic systems the optimum conditions occur for 5 and 7
electrons/atom. We point out that spin fluctuations play an
important role in suppressing superconductivity completely in
Sc and Y, and partially in some of the metals at the start of the
3d and 4d series, and thus play an important role in the validity
of the Matthias rule.
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[67] Bose S K, Kudrnovský J, Razavi F S and Andersen O K 1991

Phys. Rev. B 43 110

13

http://arxiv.org/abs/cond-mat/0110267v1
http://arxiv.org/abs/cond-mat/0703730v1
http://arxiv.org/abs/cond-mat/0604090v1
http://dx.doi.org/10.1103/PhysRev.125.1263
http://dx.doi.org/10.1103/RevModPhys.69.575
http://dx.doi.org/10.1103/PhysRevB.72.024545
http://dx.doi.org/10.1088/0953-8984/20/04/045209
http://dx.doi.org/10.1103/PhysRevB.49.16223
http://dx.doi.org/10.1103/PhysRevB.45.13244
http://dx.doi.org/10.1103/PhysRevB.46.6671
http://dx.doi.org/10.1103/PhysRevB.6.2577
http://dx.doi.org/10.1103/PhysRevB.12.905
http://dx.doi.org/10.1103/PhysRevB.57.324
http://dx.doi.org/10.1103/PhysRevB.64.020501
http://dx.doi.org/10.1007/BF01332692
http://dx.doi.org/10.1103/PhysRevB.32.4431
http://dx.doi.org/10.1103/PhysRevB.41.6553
http://dx.doi.org/10.1103/PhysRev.97.74
http://dx.doi.org/10.1103/PhysRevB.67.214518
http://dx.doi.org/10.1103/PhysRevB.72.184509
http://dx.doi.org/10.1103/PhysRevLett.42.469
http://dx.doi.org/10.1103/PhysRevB.16.255
http://dx.doi.org/10.1103/PhysRevLett.43.1256
http://dx.doi.org/10.1007/BF00628327
http://dx.doi.org/10.1103/PhysRevB.13.3978
http://dx.doi.org/10.1103/PhysRevB.16.777
http://dx.doi.org/10.1103/PhysRevB.68.134412
http://dx.doi.org/10.1103/PhysRevB.11.2109
http://dx.doi.org/10.1103/PhysRevB.4.1100
http://dx.doi.org/10.1209/epl/i2003-10076-4
http://dx.doi.org/10.1016/S0167-5729(97)00004-6
http://dx.doi.org/10.1103/PhysRevLett.74.3467
http://dx.doi.org/10.1063/1.358239
http://dx.doi.org/10.1016/0921-5107(95)01497-7
http://dx.doi.org/10.1103/PhysRevB.76.012505
http://arxiv.org/abs/cond-mat/0703730v1
http://dx.doi.org/10.1103/PhysRevB.73.094522
http://arxiv.org/abs/cond-mat/0606538v1
http://dx.doi.org/10.1103/PhysRevLett.79.4262
http://dx.doi.org/10.1103/PhysRevB.69.132101
http://dx.doi.org/10.1007/BF01141334
http://dx.doi.org/10.1103/PhysRev.146.291
http://dx.doi.org/10.1103/PhysRevB.53.8238
http://dx.doi.org/10.1088/0953-8984/19/42/425234
http://dx.doi.org/10.1103/PhysRev.149.409
http://dx.doi.org/10.1103/PhysRevB.22.4284
http://dx.doi.org/10.1103/PhysRevB.25.1981
http://dx.doi.org/10.1103/PhysRevB.25.6060
http://dx.doi.org/10.1103/PhysRevB.52.9674
http://dx.doi.org/10.1103/PhysRevB.43.3649
http://dx.doi.org/10.1103/PhysRevB.43.110

	1. Introduction
	2. Electronic structure and electron--phonon interaction
	3. Superconducting transition temperature Tc 
	4. Spin fluctuations and electron paramagnon coupling
	5. Pressure dependence of Tc  and alloying effects
	6. Summary
	Acknowledgments
	References

